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Abstract

We investigate convergence behavior of a spectral element method based on

Legendre polynomial-based shape functions solving three-dimensional linear

elastodynamics equations for a range of Poisson’s ratios of a material. We

document uniform convergence rates independent of Poisson’s ratio for a wide

class of problems with both straight and curved elements, demonstrating the

locking-free properties of the spectral element method with nearly incom-

pressible materials. Also documented is the second-order temporal conver-

gence of the Newmark integration scheme for time-dependent formulation for

a range of Poisson’s ratios.
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1. Introduction

Spectral element methods (SEM), which essentially represent a hybrid

between finite-element methods (FEM) and spectral methods, have received

increased attention during the past two decades because they retain an expo-

nential accuracy of global spectral methods while allowing for a geometrical

flexibility of h-type FEM. Originally introduced in the field of computational

fluid dynamics [1, 2, 3], spectral element methods have been adopted for

elastostatics [4, 5] and elastodynamics [6, 7, 8] problems, modeling of elas-

tic wave propagation in seismology [9, 10, 11], medical diagnostics [12], and

damage detection [13] by high-frequency ultrasound excitation.

Spectral element methods are similar to hp finite-element methods [14]

in that grid refinement can be achieved both by increasing the number of

elements (h-refinement) and by increasing the polynomial order of approxi-

mation within each element (p-refinement). The difference is in the choice of

bases and quadrature rules for evaluating the integrals in the Galerkin formu-

lation. It is well known that higher-order p and hp finite-element methods,

besides having superior convergence properties, possess an additional advan-

tage of eliminating locking present with low-order FEM [15, 16]. Locking is

defined as significant deterioration or complete loss of convergence when a

certain parameter approaches its limiting value [17, 18].

One important type of locking is volumetric, or Poisson, locking, which oc-

curs when Poisson’s ratio ν of an isotropic elastic material approaches 0.5. As

this situation occurs, the divergence of a displacement field approaches zero,

representing the condition of material incompressibility. Nearly incompress-

ible behavior is peculiar to viscoelastic materials such as rubberlike polymers
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and elastomers (polyamide, polystyrene, polycarbonate, polyurethane, buta-

diene, natural rubber, etc.) [19]. In addition, soft biological tissues such as

endothelium, smooth muscle cells, and adventitia forming the blood vessel

walls exhibit similar rubberlike behavior [20] and are often modeled as elastic

incompressible materials [21, 22, 23].

When nearly incompressible materials are modeled with low-order h-type

finite elements, Poisson locking results in a poor numerical solution that does

not improve, or improves very slowly, with grid refinement [18, 24]. Locking

occurs because of the need to satisfy the divergence-free constraint on dis-

placements, one per element, which, in the case of h-refinement with low p,

results in a number of constraints comparable to the number of degrees of

freedom [25, 26]. To remedy the situation, one must reduce the number of

constraints per degree of freedom [27]. To do so, one invokes special numeri-

cal techniques of varying difficulty, such as reduced/selective integration [28],

field-consistent approach [29], or mixed methods, where the divergence con-

straint is introduced through a Lagrange multiplier [30].

Higher-order p and hp methods naturally avoid the locking phenomenon

without the need for ad hoc numerical techniques because of the elevated

number of degrees of freedom per element and inherently low constraint ratio.

Researchers have shown theoretically [17, 18, 31] and demonstrated numeri-

cally [18, 25, 32] that in the p and hp versions of FEM the error measured in

the energy norm converges at the same rate independent of Poisson’s ratio.

Spectral element methods, because of their close relation to hp–FEM, would

be expected to retain the locking-free properties associated with higher-order

approximation. In spite of a popularity of spectral element methods, how-
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ever, neither theoretical nor computational studies of their behavior with

nearly incompressible materials in its original (displacement) formulation

have been performed.

Pavarino et al. theoretically analyzed the condition number of a pre-

conditioned matrix operator for Legendre spectral element discretization of

displacement formulation for compressible materials [4] and mixed formu-

lation for incompressible materials [5, 33, 34]. Sprague et al. documented

computational studies of convergence of Legendre spectral element formu-

lation for a 1D Timoshenko beam [35] and 2D Reissner-Mindlin plate [36]

using Poisson’s ratio ν = 0.3. Dong and Yosibash [8] computationally inves-

tigated convergence of Jacobi spectral element formulation with 3D steady

and unsteady elasticity equations, also using ν = 0.3. Few other studies

with spectral elements, mostly with application to seismology, considered

Earth-like solids with Poisson’s ratio of 0.25 to 0.33 [7, 9, 10, 11], without

documenting the convergence and error behavior.

The main goal of this paper is to investigate convergence properties of

Legendre spectral element formulation computationally for steady and un-

steady linear elasticity problems for a range of Poisson’s ratios, from com-

pressible (ν = 0.3) to nearly incompressible (up to ν = 0.4999999999). The

novelty of the current paper, in addition to investigating locking behavior

with respect to spectral elements as opposed to finite elements, consists in

addressing the issue of locking for time-dependent problems, which has never

been done before for neither spectral or finite-element methods.

The paper is organized as follows. In Section 2, we present the governing

equations and their spatial and temporal discretization. In Section 3, we
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look at numerical examples of steady elasticity problems with straight and

curved elements. In Section 4, we consider an unsteady problem. In Section

5, we draw conclusions.

2. Problem Formulation

In this section, we present the problem formulation, including governing

equations and their numerical discretization.

2.1. Equations and the variational form

We consider time-dependent linear elasticity equations

ρ
∂2u

∂ t2
+ c

∂ u

∂ t
= ∇ · σ + f , (1)

where ρ is the mass density, c is the viscous damping coefficient, u is the

displacement vector, t is the time, σ is the Cauchy stress tensor, and f is the

body force per unit volume. The method proceeds by casting Eq. (1) into an

equivalent variational form. Let Ω ∈ Rd, d = 2, 3, be a domain of interest

and ∂ Ω = ∂ ΩD∪∂ ΩN be its boundary decomposed into parts with Dirichlet

and Neumann (traction) boundary conditions. Define the following proper

subspaces of the H1(Ω) Sobolev space (space of functions square-integrable

over Ω whose first spatial derivatives are also square-integrable over Ω):

X = {v(x, t) ∈ H1(Ω)d : v(x, t)|∂ ΩD
= uD(x, t)},

X0 = {v(x, t) ∈ H1(Ω)d : v(x, t)|∂ ΩD
= 0}. (2)

Then the variational formulation of the linear elasticity problem is as follows:

Find the displacement field u(x, t) ∈ X such that ∀ v(x, t) ∈ X0∫
Ω
ρ ∂2u

∂ t2
· v dΩ +

∫
Ω
c ∂u

∂ t
· v dΩ =

−
∫
Ω
σ(u) : ϵ(v) dΩ +

∫
∂ ΩN

t · v dΓ +
∫
Ω
f · v dΩ.

(3)
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Here t is the external traction force applied on ∂ ΩN , and ϵ(v) = 1
2
[∇v +

(∇v)T ] is the linearized strain tensor. The vector and tensor inner products

are defined as

u · v =
d∑

i=1

ui vi, (4)

σ(u) : ϵ(v) =
d∑

i=1

d∑
j=1

σij(u)ϵij(v). (5)

For linear elasticity, constitutive equations arise from Hooke’s law,

σ = 2µ ϵ+ λ tr(ϵ) I, (6)

where

µ =
E

2(1 + ν)
, (7)

λ =
E ν

(1 + ν)(1− 2 ν)
(8)

for 3D isotropic materials and 2D plane strain formulation, and

λ =
E ν

(1 + ν)(1− ν)
(9)

for 2D plane stress formulation, E is Young’s modulus, ν is Poisson’s ratio,

tr() denotes the trace, and I is the identity matrix. Introducing constitutive

relations (6) into Eq. (5) leads to

σ(u) : ϵ(v) = 2µ (ϵ(u) : ϵ(v)) + λ divu divv. (10)

We denote

Bν(u,v) =

∫
Ω

[2µ (ϵ(u) : ϵ(v)) + λ divu divv] dΩ (11)

as the bilinear form of linear elasticity.
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2.2. Spatial discretization

In the spectral element method, the computational domain Ω is decom-

posed into a set of nonoverlapping subdomains (elements) Ω = ∪E
e=1Ω

e. In

the current method, we assume that for each Ω e there exists an affine trans-

formation Ω̂ = ϕ e(Ω e) into the reference element Ω̂ = [−1,+1]d, implying

that Ω e are hexahedral. Other choices (prismatic, tetrahedral, etc.) are

available [8, 37], but they will not be pursued here. On the reference element

Ω̂ we introduce Qp(Ω̂), the space of polynomial functions of degree p in each

spatial variable, and restrict the trial and test functions u and v in each

element Ω e to the finite-dimensional spaces Xp and Xp
0,

Xp = {v(x, t) ∈ X : vi|Ωe = ψ ◦ ϕ e, ψ ∈ Qp(Ω̂), i = 1, . . . d},

Xp
0 = {v(x, t) ∈ X0 : vi|Ωe = ψ ◦ ϕ e, ψ ∈ Qp(Ω̂), i = 1, . . . d}, (12)

where f ◦ g denotes a function composition. The basis functions for the poly-

nomial space Qp(Ω̂) are chosen to be the tensor product of one-dimensional

Lagrange interpolating polynomials hi(r), r ∈ [−1,+1], on the Gauss-Lobatto-

Legendre (GLL) quadrature points ξm ∈ [−1,+1], i,m = 0, . . . , p, corre-

sponding to a nodal basis. Let hi(r) be the Lagrange interpolating polyno-

mial satisfying h i(ξm) = δim. Every function in Qp(Ω̂) is represented as a

tensor product

f(x, t)|Ω̂ =

p∑
i=0

p∑
j=0

{
p∑

k=0

}f e
i j {k}(t)hi(r)hj(r){hk(r)}, (13)

where f e
i j {k}(t) are unknown expansion coefficients and curly brackets con-

tain the extra terms that arise in three dimensions. Spatial derivatives of a

function in Qp(Ω̂) can be defined analogously through the derivatives of the
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corresponding Lagrange polynomials:

∂ f

∂ x1
(x, t)|Ω̂ =

p∑
i=0

p∑
j=0

{
p∑

k=0

}f e
i j {k}(t)h

′
i(r)hj(r) {hk(r)}. (14)

The current choice of basis functions allows for an efficient quadrature im-

plementation. In addition, it is continuous across subdomain interfaces [38].

The quadrature rules are defined as∫
Ω̂

f g d Ω̂ =

p∑
i=0

p∑
j=0

{
p∑

k=0

} f e
i j {k} g

e
i j {k} σi σj {σk} (15)

and∫
Ω

f g dΩ =
E∑

e=1

p∑
i, j, {k}=0

(f ◦ϕe)i j {k} (g ◦ϕe)i j {k}|Je|i j {k} σi σj {σk}, (16)

where σi is the GLL quadrature weight associated with ξi and |Je|i j {k} is

the Jacobian of the transformation ϕ e at the point (ξi, ξj, {ξk}). Thus, for a

bilinear form
∫
Ω
u · v dΩ we can write∫

Ω

u · v dΩ = vT Bu, (17)

where u, v are the vectors with dimensions N = d E (p + 1) d of the cor-

responding expansion coefficients uei j {k}m, v
e
i j {k}m, i, j, {k} = 0, . . . , p, m =

1, . . . , d, e = 1, . . . , E , and B is the (diagonal) mass matrix. Quadrature for

the surface integral
∫
∂ ΩN

t · v dΓ is defined similar to Eq. (16) using sum-

mation over the surface nodes on ∂ ΩN with the corresponding quadrature

weights and surface Jacobians in place of the volumetric ones. Using the

definition of Eq. (14) for spatial derivatives, one can analogously define dis-

crete quadrature for a bilinear form of linear elasticity Bν(u,v) of Eq. (11),

resulting in a symmetric, positive-definite stiffness matrix A. Although the

8



stiffness matrix is no longer diagonal, the corresponding matrix-vector prod-

ucts can be efficiently evaluated in O(p d+1) operations if one retains the

matrix tensor-product form in favor of its explicit formation [39]. Applying

the corresponding numerical quadrature rules to every integral in the contin-

uous Eq. (3), one can reformulate the original variational problem in discrete

form: Find U(t) ∈ RN
0 such that ∀ v(t) ∈ RN

0

vT M
(
ρBÜ+ cBU̇+AU

)
M = vT M (Bf +BN t− LuD), (18)

where an additional mask matrix M is introduced to account for Dirichlet

boundary conditions; M is the diagonal matrix having zeros at nodes cor-

responding to ∂ ΩD and ones everywhere else. Correspondingly, RN
0 is the

subspace of the vector space RN enforcing homogeneous Dirichlet boundary

conditions. The term BN t in the right-hand side accounts for the surface

integral
∫
∂ ΩN

t · v dΓ arising from the traction boundary conditions, where

BN is obtained from the mass matrix B by zeroing out all the entries except

for the ones corresponding to the nodes of ∂ ΩN . The term LuD accounts for

inhomogeneous Dirichlet boundary conditions, where uD(t) is the expansion-

coefficient vector of any function satisfying inhomogeneous Dirichlet bound-

ary conditions v(x, t)|∂ ΩD
= uD(x, t) and LuD = ρBüD + cB u̇D +KuD.

This discrete variational problem is equivalent to solving the following system

of equations for the vector U(t) ∈ RN
0 :

MÜ+CU̇+KU = F, (19)

where M = ρMBM, C = cMBM, K = MAM, and

F = M (Bf + BN t − LuD). The composite solution satisfying inhomo-

9



geneous Dirichlet boundary conditions is obtained as

u(t) = U(t) + uD(t). (20)

2.3. Temporal discretization

For temporal discretization, we employ a predictor/multicorrector New-

mark algorithm [40]. This algorithm enforces the following relations between

the displacements Un, velocities U̇n, and accelerations Ün at the two con-

secutive times tn = n∆ t and tn−1 = (n− 1)∆ t, where ∆ t is the time step:

U̇ n = U̇ n−1 +∆ t
[
(1− γ) Ü n−1 + γ Ü n

]
,

U n = U n−1 +∆ t U̇ n−1 +
(∆ t)2

2

[
(1− 2 β) Ü n−1 + 2 β Ü n

]
. (21)

The choice of β and γ determines particular properties of the method. For

1/2 ≤ γ ≤ 2 β the scheme achieves unconditional stability. Newmark orig-

inally proposed the constant-average-acceleration method (corresponding to

the trapezoidal rule) with β = 1/4, γ = 1/2, which corresponds to an uncon-

ditionally stable, second-order accurate scheme. These parameters are used

in the current paper.

Equations (21) can be rewritten in terms of the increments. Thus, if we

substitute into Eqs. (21) Ü n = Ü n−1+∆Ü n, where ∆Ü n is the increment

in acceleration, we get

U̇ n = U̇ n−1 +∆ t Ü n−1 + γ∆ t∆Ü n,

U n = U n−1 +∆ t U̇ n−1 +
(∆ t)2

2
Ü n−1 + β∆ t 2 ∆Ü n. (22)

Equations of the form (22) suggest a convenient iterative approach to the

implicit scheme (21). The algorithm is defined by distributing the increment
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∆Ü
n
over k iterations ∆Ü

n
=

∑k
i=0∆Ü

i

n and writing

U̇
0

n = U̇ n−1 +∆ t Ü n−1 + γ∆ t∆Ü
0

n,

U0
n = U n−1 +∆ t U̇ n−1 +

(∆ t)2

2
Ü n−1 + β∆ t 2 ∆Ü

0

n (23)

for the predictor step, and

Ü
i

n = Ü
i−1

n +∆Ü
i

n,

U̇
i

n = U̇
i−1

n + γ∆ t∆Ü
i

n,

Ui
n = Ui−1

n + β (∆ t)2 ∆Ü
i

n (24)

for i = 1, . . . , k corrector steps.

At the corrector steps, the increment in acceleration ∆Ü
i

n is obtained

from the substitution of Eqs. (24) into Eq. (19) to yield

M⋆∆Ü
i

n = ∆F i
n, (25)

where

M⋆ = M+ γ∆ tC+ β (∆ t)2K. (26)

The residual is obtained as

∆F i
n = F n −MÜ

i−1

n −CU̇
i−1

n −KU i−1
n . (27)

Since at the predictor step the value of acceleration increment ∆Ü
0

n is

unknown, it has to be specified a priori. Thus, different choices for the

predictor step are possible, such as constant acceleration, constant velocity,

or constant displacements [41]. In the current method, we use the constant
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velocity predictor of the form U̇
0

n = U̇ n−1, which essentially sets ∆Ü
0

n =

−Ü n−1/γ and leads to the following formulas:

Ü
0

n = −(1− γ)

γ
Ü n−1,

U̇
0

n = U̇ n−1,

U0
n = U n−1 +∆ t U̇ n−1 +

(∆ t)2

2
(1− 2 β

γ
) Ü n−1. (28)

The iteration process is continued until either the maximum number of

iterations kmax is reached or the convergence criterion ||∆F i
n|| ≤ ϵ ||∆F 1

n||

is satisfied. The matrix equation (25) is solved at each iteration by using a

conjugate gradient method. For steady problems, the equation

KU = F (29)

is solved once by using the conjugate gradient method.

3. Convergence Results: Steady Problems

Several test cases documenting a spatial convergence of the developed

spectral-element algorithm for steady problems are presented in this section.

3.1. Straight elements: bending of a beam (plane stress)

In the first test problem, we consider a bending of a narrow cantilever

beam of rectangular cross-section under the end load. For this configuration,

plane stress conditions can be assumed, reducing the problem to the two-

dimensional case with Lamé coefficients given by Eqs. (7) and (9). An exact

solution to this problem exists [42] and is given in Appendix Appendix A.1.

We use length L = 10, width d = 1, Young’s modulus E = 10000, and
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2 4 6 8 10

p

L2(u)
ν=0.3

ν=0.5

Figure 1: Bent beam and deflection of the centerline compared with the exact solution

(symbols).

end load P = −3 I E/L3 (I is the cross-sectional moment of inertia) giving

the end beam deflection v = −1. The boundary conditions are stress-free

at the upper and lower edges, with parabolic shear stress distribution τxy =

−P (d2/4−y2)/(2 I) at the left edge (x = 0) and displacements (or Dirichlet)

boundary conditions at the right edge (x = L). The computational domain

consists of E = 5 rectangular elements. The bent beam and the deflection

of the beam centerline compared with the exact solution are shown in Fig. 1

for ν = 0.3, p = 4. The agreement is excellent. To quantify the error with

p-refinement, we plot the L2(u) error versus the polynomial order in Fig. 2

for the values of ν = 0.3 and ν = 0.5.

Since the analytical solution is the polynomial of degree 3, the SEM recov-

ers it with machine accuracy for p = 3 and higher; therefore it is meaningless

to talk about the asymptotic rate of convergence with p [18]. Note that for

plane stress elasticity, the incompressibility condition ν = 0.5 does not make

the governing equations singular because it is 1 − ν, and not 1 − 2ν that

appears in the denominator of λ (cf. Eqs. (8) and (9)). That explains why
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-2

-1

0

P

Figure 2: L2(u) error versus the polynomial order for a narrow beam in plane stress.

the solution is recovered exactly for ν = 0.5 as well as for ν = 0.3 (Fig. 2)

and there are no floating-point exceptions at ν = 0.5 in this case. Thus,

plane stress loading does not represent a challenging test for Poisson locking

and will not be considered further.

3.2. Straight elements: unit square (plane strain)

To consider a more challenging test for Poisson locking, we look at a two-

dimensional plane strain problem, with µ and λ defined by Eqs. (7) and (8).

We consider a deformation of a unit square [0, 1]×[0, 1], with an exact solution

for displacements listed in Appendix Appendix A.2. We choose the values

A = (1− ν)/a, B = −ν/b. This choice corresponds to the most general but

realistic loading with nonzero divergence

divu = (1− 2 ν) cos(a x) cos(b y),

14



which correctly reduces to zero in the incompressible case ν = 0.5; and with

nonzero shear

γxy = −[(1− ν) b / a− ν a / b] sin(a x) sin(b y).

We set a = π/2, b = π/3, E = 1000, and we decompose the domain into four

square elements of size h× h with h = 0.5.

Following previous studies of locking properties of p and hp-FEMmethods

with nearly incompressible materials [16, 17, 18, 25, 32, 43], we document

convergence of our SEM method in terms of the energy norm. Energy norm

is defined as

||u|| energy, ν = (Bν (u,u))
1/2 , (30)

where Bν (u,u) is the bilinear form of linear elasticity previously defined by

Eq. (11). In Fig. 3 we plot the percentage relative error in the energy norm

(e r) energy, ν = 100× ||unumer − u exact|| energy, ν
||u exact|| energy, ν

(31)

versus the square root of a number of degrees of freedom N for different

values of Poisson’s ratio. The reason for plotting versus N1/2 is that when

the exact solution is analytic on the solution domain, the rate of convergence

of p-extensions is exponential [25]:

(e r) energy, ν ≤ ke
exp(γeN1/d)

, (32)

where ke and γe are positive constants, ke being dependent on Poisson’s ratio,

but γe not (d = 2, 3 is the domain dimension). Results of Fig. 3 correspond

well to the theoretical prediction of Eq. (32) and to the results obtained with
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the p-version FEM (see, for example, [25], Fig. 3) including the existence of

pcrit and the bounding envelope shown schematically in Fig. 3. The shape of

the envelope depends on various factors, such as whether the elements are

curved or triangular (pcrit is smaller for triangles than for quadrilaterals).

No locking is observed for spectral element methods with straight elements,

since the convergence rate does not depend on Poisson’s ratio (error curves

are parallel). However, convergence starts for higher values of the polynomial

order as Poisson’s ratio approaches 0.5, consistent with previous observations

for the p-version FEM.

To investigate the influence of boundary conditions, we show the results

for both traction (inhomogeneous Neumann) and displacement (inhomoge-

neous Dirichlet) boundary conditions, found as the corresponding values of

the exact solution (Appendix A.4) at the boundaries. The same rate of

convergence is observed with both traction and displacement boundary con-

ditions, consistent with the existing mathematical proofs and numerical ex-

periments for the p-version FEM [25, 31, 43].

3.3. Straight elements: unit cube

To document the spatial convergence in the full 3D case, we consider the

deformation of a unit cube [0, 1]×[0, 1]×[0, 1], with an exact solution given in

Appendix Appendix A.3. With A = (1− ν)/a, B = −0.5 ν/b, C = −0.5 ν/c,

we again recover a general loading situation with nonzero divergence,

divu = (1− 2 ν) cos(a x) cos(b y) cos(c z),

approaching zero at ν → 0.5, and nonzero shear strain components γxy, γxz,

γyz. We set a = π/2, b = π/3, c = π/4, E = 1000 and decompose the domain
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Figure 3: Convergence in the energy norm for a unit square.

into eight cubic elements of size h× h× h with h = 0.5. Note that most of the

previous studies on locking with hp-FEM were confined to two dimensions

and did not consider three-dimensional cases [16, 18, 25, 43]. Convergence in

the energy norm versus the cubic root of a number of degrees of freedom N

is plotted in Fig. 4 for both traction and displacement boundary conditions.

The results are almost identical to those of a unit square, showing that the

spatial dimension by itself does not influence the convergence and locking

properties of the spectral element method, at least for straight elements.

3.4. Curved elements: hollow cylinder under internal pressure (plane strain)

To investigate the influence of curved elements on the method’s spatial

convergence, we look at the problems in cylindrical and spherical configura-

tions. We first consider a long, thick-walled, hollow cylinder under internal

pressure resulting in plane strain loading, with an exact solution given, for ex-

ample, in [44] and documented in Appendix Appendix A.4. We set E = 1000,
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Figure 4: Convergence in the energy norm for a unit cube.

internal pressure P = 100, the inner and outer radii of the cylinder ri = 0.5

and ro = 1. Because of the plane strain loading, this problem can be con-

sidered in 2D. The computational domain consists of a hollow disk with six

circumferential elements of the radial width h = 0.5. The computational

domain and solution (radial displacement for ν = 0.3) are shown in Fig. 5a.

Convergence in the energy norm versus N1/2 is shown in Fig. 6 for traction

and displacement boundary conditions. Although more severe locking effects

for curved elements compared with straight elements were observed in [16, 18]

with hp finite-element methods, the current study does not show significant

deterioration in convergence rates as a result of locking. Note that special

care has been taken here to ensure that the location of the grid nodes and

the GLL points is exact with the double precision in cylindrical coordinates.

The major effect of the curved elements is to increase the polynomial degree

at which the error drops down to machine accuracy for compressible mate-
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(a) Hollow cylinder. Min displacement

0.05 (at r0); max displacement 0.1 (at

ri).

(b) Hollow sphere. Min displacement 0.01

(at r0); max displacement 0.04 (at ri).

Figure 5: Meshes with curved elements. Radial displacement ur is shown.

rials and, as a consequence, to increase pcrit and to change the shape of the

bounding envelope for incompressible materials, as discussed in Sec. 3.2.

3.5. Curved elements: hollow sphere under internal pressure

Our last example with steady elasticity problems is a 3D loading case

with curved elements, namely, that of a thick-walled hollow sphere under

internal pressure, with an exact solution given in Appendix Appendix A.5.

Note that a spherical domain is a more stringent case than those considered

in previous 2D studies of locking with hp-FEM [16, 18, 25, 43]. We set

E = 1000, P = 100, spherical shell radii ri = 0.5, and ro = 1; the domain

consists of 24 elements with the radial width h = 0.5. Two orthogonal cross-

sections of the sphere and the radial displacement for ν = 0.3 are shown in

Fig. 5b. Convergence in the energy norm versus N1/3 is shown in Fig. 7 for

19



0 10 20 30 40 50

N1/2

1.0E-010

1.0E-008

1.0E-006

1.0E-004

1.0E-002

1.0E+000

1.0E+002

P
e
rc

e
n
ta

g
e
 r

e
la

tiv
e
 e

rr
o
r 

in
 e

n
e
rg

y 
n
o
rm

0 2 4 6 8 10 12 14 16 18 20

Polynomial order

ν=0.4999999999

ν=0.4999999

ν=0.4999

ν=0.49ν=0.3

(a) Traction boundary conditions

0 10 20 30 40 50

N1/2

1.0E-010

1.0E-008

1.0E-006

1.0E-004

1.0E-002

1.0E+000

1.0E+002

P
e
rc

e
n
ta

g
e
 r

e
la

tiv
e
 e

rr
o
r 

in
 e

n
e
rg

y 
n
o
rm

0 2 4 6 8 10 12 14 16 18 20

Polynomial order

ν=0.4999999999

ν=0.4999999

ν=0.4999

ν=0.49ν=0.3

(b) Displacement boundary conditions

Figure 6: Convergence in the energy norm for the hollow cylinder.
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Figure 7: Convergence in the energy norm for the hollow sphere.
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traction and displacement boundary conditions. Conclusions similar to that

of the cylindrical shell domain stay valid, confirming the absence of the effect

of problem dimension on the locking properties of the method, as observed

with the straight elements.

4. Convergence Results: Unsteady Problem

As an example of an unsteady problem, we choose a previously studied

configuration of a unit square in plane-strain conditions, but with non-zero

density. In this case, because of inertia effects, the displacements are the

oscillatory functions; and if damping is present, they also decay in time, with

the frequency and the rate of decay given in Appendix Appendix A.6. We set

Young’s modulus E = 1000 and the domain [0, 1] × [0, 1] decomposed into

four square elements, as in the corresponding steady example, and choose

a = π/3, ρ = 1000, A = 1, and two values of damping coefficient: c = 0,

corresponding to no damping, and c = 100, corresponding to the addition

of damping. Note that a more general time-dependent solution could be

constructed, with b ̸= a and B ̸= −A (see the corresponding solution for a

steady unit square), but this would lead either to two displacement functions,

u and v, oscillating with different frequencies (thus making divergence-free

constraint impossible to satisfy at every moment in time), or to frequency

being a function of λ and µ, rather than just µ, becoming infinite at ν → 0.5.

Although such solutions could exist for ν ̸= 0.5, they would not be valid in

the nearly incompressible case of ν → 0.5 and are therefore not considered

here.

Exact and numerical solutions for a long-time integration (t = 100) for
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the axial displacement for both undamped and damped cases are presented

in Fig. 8 (ν = 0.3, p = 5, and ∆ t = 0.1 are used). The exact and numerical

solutions are virtually indistinguishable. Spatial convergence versus N1/2 at

t = 10 is presented in Fig. 9 for both undamped and damped cases for a

range of Poisson’s ratios. We present results for traction boundary condi-

tions; results for displacement boundary conditions are essentially the same

(cf. Figs. 3 and 4). As in the steady problem with straight elements, no

locking is observed in the time-dependent problem for both the undamped

and damped cases, with the same convergence rate as in the steady prob-

lem. The only difference is that the minimum error that can be achieved by

p-refinement is now controlled by the time step (spatial convergence stops

when the polynomial degree is high enough that the spatial error drops below

the temporal error). One can see that the minimum error (controlled by the

temporal error) drops by two orders of magnitude when the time step is re-

duced by one order of magnitude, consistent with the second-order accuracy

of the Newmark temporal discretization scheme. The temporal convergence

at polynomial degree p = 8 is shown in Fig. 10. For lower Poisson’s ratios,

the expected second-order temporal convergence is observed for all the time

steps. As Poisson’s ratio increases, second-order convergence is still observed

for larger time steps, but it deteriorates for smaller time steps. This deteri-

oration can be explained by the fact that for large time steps, the temporal

error dominates, and we observe the expected second-order temporal conver-

gence, whereas for small time steps, the spatial error becomes dominant, a

situation that does not change with further reduction in time-step size and

thus slows or stops the temporal convergence. Since spatial errors are gener-
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Figure 8: Axial displacement versus time for undamped and damped cases. Lines corre-

spond to exact solution, symbols to numerical solution.

ally higher for higher Poisson’s ratios for the same p (see Figs. 3 and 9), this

“temporal locking” behavior is observed only for high Poisson’s ratios.

Note that this study is, to our knowledge, the first in the open literature

that addresses the issue of Poisson locking for time-dependent problems with

finite or spectral element methods.

5. Conclusions

In this paper, we investigate convergence properties of the Legendre spec-

tral element approximation of displacement formulation of the linear elas-

ticity equations for a range of Poisson’s ratios from a compressible regime

(ν = 0.3) to nearly incompressible regime (ν = 0.4999999999). Several

numerical experiments are considered, including problems with straight ele-

ments in 2D (plane stress and plane strain) and 3D regimes, problems with

curved elements in 2D and 3D, and an unsteady problem. For steady prob-

lems with both straight and curved elements, we demonstrate exponential

convergence with p-refinement independent of Poisson’s ratio, showing that

23



4 8 12 16 20

N1/2

1.0E-008

1.0E-006

1.0E-004

1.0E-002

1.0E+000

1.0E+002

P
e
rc

e
n
ta

g
e
 r

e
la

tiv
e
 e

rr
o
r 

in
 e

n
e
rg

y 
n
o
rm

2 3 4 5 6 7 8 9 10

Polynomial order

ν=0.4999999999

ν=0.4999999

ν=0.4999
ν=0.49ν=0.3

ν=0.3, ∆ t=10-4

(a) Undamped case

4 8 12 16 20

N1/2

1.0E-008

1.0E-006

1.0E-004

1.0E-002

1.0E+000

1.0E+002

P
e
rc

e
n
ta

g
e
 r

e
la

tiv
e
 e

rr
o
r 

in
 e

n
e
rg

y 
n
o
rm

2 3 4 5 6 7 8 9 10

Polynomial order

ν=0.4999999999

ν=0.4999999

ν=0.4999
ν=0.49

ν=0.3

ν=0.3, ∆ t=10-4

(b) Damped case

Figure 9: Spatial convergence in the energy norm for a time-dependent problem in a unit

square, ∆ t = 10−3.
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Figure 10: Temporal convergence in the energy norm for a time-dependent problem in a

unit square, p = 8.
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high-order methods are free from the locking phenomenon inherent in low-

order methods, consistent with previous observations with finite elements.

The effect of the curved elements is to increase the polynomial degree at

which the error drops down to machine accuracy for compressible materials

and, as a consequence, to increase pcrit and to push the bounding envelope as-

sociated with locking to the right for incompressible materials. We also show

for the first time that locking properties with respect to p-refinement are un-

changed when the time-dependent problems are considered, but “temporal

locking” can be observed for high Poisson’s ratios with respect to temporal

refinement due to the dominance of spatial errors.
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Appendix A. Exact Solutions to the Test Problems

Appendix A.1. Bending of a narrow cantilever beam

For the bending of a narrow cantilever beam with rectangular cross-

section of length L and height d, under the end load P applied at x = 0

and fixed at the point x = L, y = 0, the following exact solution exists for
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the horizontal displacement u and the vertical displacement v [42]:

u = − P

2EI
x2y +

P

3EI
(1 +

ν

2
)y3 +

P

2EI
[L2 − (1 + ν)

d2

2
] y,

(Appendix A.1)

v =
νP

2EI
x y2 +

P

6EI
x3 − PL2

2EI
x+

PL3

3EI
.

(Appendix A.2)

Here I = d3/12 is the cross-sectional moment of inertia.

Appendix A.2. Deformation of a unit square

For a unit square [0, 1]× [0, 1] in plane strain conditions under forcing

fx = [(Aa2 +B a b)(λ+ µ) + A(a2 + b2)µ] sin(a x) cos(b y),

fy = [(B b2 + Aa b)(λ+ µ) +B(a2 + b2)µ] cos(a x) sin(b y),

(Appendix A.3)

the following exact solutions exist:

u = A sin(a x) cos(b y),

v = B cos(a x) sin(b y). (Appendix A.4)

Appendix A.3. Deformation of a unit cube

For a unit cube [0, 1]× [0, 1]× [0, 1] under forcing

fx = Ax sin(a x) cos(b y) cos(c z),

fy = Ay cos(a x) sin(b y) cos(c z),

fz = Az cos(a x) cos(b y) sin(c z), (Appendix A.5)
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where

Ax = (Aa2 +B a b+ C a c)(λ+ µ) + A(a2 + b2 + c2)µ,

Ay = (B b2 + Aa b+ C b c)(λ+ µ) +B(a2 + b2 + c2)µ,

Az = (C c2 + Aa c+B b c)(λ+ µ) + C(a2 + b2 + c2)µ,

(Appendix A.6)

the solutions are

u = A sin(a x) cos(b y) cos(c z),

v = B cos(a x) sin(b y) cos(c z),

w = C cos(a x) cos(b y) sin(c z). (Appendix A.7)

Appendix A.4. Hollow cylinder under internal pressure

For a plane strain hollow cylinder with the inner radius ri and the outer

radius ro under internal pressure P and zero external pressure (satisfying

boundary conditions σr(ri) = −P, σr(ro) = 0), the displacements in cylin-

drical coordinates have the form [44]

ur =
1 + ν

E

P r2i
r 2
o − r 2

i

[
(1− 2 ν) r +

r2o
r

]
,

uθ = 0, uz = 0. (Appendix A.8)

Appendix A.5. Hollow sphere under internal pressure

For a hollow sphere with the inner radius ri and the outer radius ro under

internal pressure P and zero external pressure (satisfying boundary condi-

tions σr(ri) = −P, σr(ro) = 0), the displacements in spherical coordinates
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have the form (see [45])

ur =
1

E

P r3i
r 3
o − r 3

i

[
(1− 2 ν) r + (1 + ν)

r3o
2 r2

]
,

uθ = 0, uϕ = 0. (Appendix A.9)

Appendix A.6. Vibrating unit square

For a unit square [0, 1] × [0, 1] with the density ρ and the damping c

in plane strain conditions with fx = fy = 0 and appropriate initial and

boundary conditions, the exact time-dependent solution can be found as

u = A sin(a x) cos(a y) cos (ω t) e−β t,

v = −A cos(a x) sin(a y) cos (ω t) e−β t, (Appendix A.10)

where

β =
c

2 ρ
, ω =

√
β2 +

(α− c β)

ρ
, α = 2 a2 µ. (Appendix A.11)
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